RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

B.A./B.SC. SECOND SEMESTER EXAMINATION, MAY-JUNE 2013

FIRST YEAR

Date : 20/5/2013 Time : 11 am – 3 pm MATHEMATICS (Honours) Paper : II

Full Marks : 100

[3+2]

[2+3]

[5]

[5]

[5]

[Use separate Answer Books for each group]

<u>Group – A</u>

Answer **any five** questions from **<u>Q. No. 1-8</u>** and **any five** questions from **<u>Q. No. 9-16</u>** :

- 1. If z is a variable complex number such that $\left|\frac{z-i}{z+1}\right| = K$, show that the point z lies on a circle on the complex plane if $K \neq 1$ and z lies on a straight line if K = 1. [5]
- 2. a) Find the principal amplitude of z where $z = 1 + i \tan \theta$, $\frac{\pi}{2} < \theta < \pi$
 - b) Find all complex number z such that $\exp z = -1$.
- 3. State and prove Cauchy-Schwarz inequality.
- 4. a) If x, y, z are positive real numbers and x + y + z = 1, prove that $(1-x)(1-y)(1-z) \le \frac{8}{27}$.
 - b) Find the maximum value of $(x+2)^5(7-x)^4$ when -2 < x < 7.
- 5. a) Find the range of values of r for which the equation $3x^4 + 8x^3 6x^2 24x + r = 0$ has four real and unequal roots.
 - b) Apply Descartes' rule of signs to find the nature of the roots of $x^7 + x^5 x^3 = 0$ [3+2]
- 6. Find the equation whose roots are squares of the roots of $x^4 x^3 + 2x^2 x + 1 = 0$ and use Descartes' rule of signs to the resulting equation to deduce that the given equation has no real root. [5]
- 7. Prove that the equation $(x+1)^4 = a(x^4+1)$ is a reciprocal equation if $a \neq 1$ and solve it when a = -2. [5]
- 8. Solve by Cardan's method : $x^3 + 3x^2 3 = 0$
- 9. Let $\{u_n\}$ be a monotone decreasing sequence of positive real numbers. Prove that $\sum_{i=1}^{\infty} u_n$ and $\sum_{i=1}^{\infty} 2^n u_{2^n}$ converge or diverge together.
- 10. Answer either (a) or (b) :

a) Show that the series $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$ converges to log 2, but the rearranged series

$$1 - \frac{1}{2} - \frac{1}{4} - \frac{1}{6} - \frac{1}{8} + \frac{1}{3} - \frac{1}{10} - \frac{1}{12} - \frac{1}{14} - \frac{1}{16} + \frac{1}{5} - \dots \text{ converges to } 0.$$
[5]

- b) State and prove Leibnitz's test for convergence of an alternating series of real numbers. [1+4]
- 11. a) Exhibit an open cover of the set $\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$ that has no finite subcover.
 - b) If K_1 and K_2 are disjoint compact sets, show that there exist $\alpha_i \in K_i$, i = 1,2 such that $0 < |\alpha_1 - \alpha_2| = inf \{ |x_1 - x_2| : x_1 \in K_1, x_2 \in K_2 \}$ [2+3]
- 12. a) Let $c \in \mathbb{R}$ and a function $f : \mathbb{R} \to \mathbb{R}$ is continuous at c. If for every positive δ there is a point y in $(c-\delta, c+\delta)$ such that f(y) = 0, prove that f(c) = 0. [3]
 - b) Let $f : \mathbb{R} \to \mathbb{R}$ be continuous on \mathbb{R} . Prove that $Z(f) = \{x \in \mathbb{R} | f(x) = 0\}$ is a closed set in \mathbb{R} . [2]

13. a) A function $f : \mathbb{R} \to \mathbb{R}$ is defined by

$$f(x) = x^{2} + 1, x \in \mathbb{Q}$$
$$= x, x \in \mathbb{R} - \mathbb{Q}$$

Prove that f has a discontinuity of the second kind at every point c in \mathbb{R} . [3]

- b) A function f:[0,1]→ R is continuous on [0,1] and f assumes only rational values on [0,1]. Prove that f is a constant.
- 14. Let f be derivable in a closed and bounded interval [a,b] and $f'(a) \neq f'(b)$. If K is any real number lying between f'(a) and f'(b), show that there exists at least one point $c \in (a,b)$ such that f'(c) = K. [5]

15. a) Prove that the function f defined on \mathbb{R} by $f(x) = \frac{1}{x^2 + 1}$, $x \in \mathbb{R}$ is uniformly continuous on \mathbb{R} . [2]

b) A function f is differentiable on [0,2] and f(0) = 0, f(1) = 2, f(2) = 1. Prove that f'(c) = 0 for some c ∈ (0,2).

16. a) Find a and b in order that
$$\lim_{x \to 0} \frac{a \sin 2x - b \sin 3x}{5x^3} = 1.$$
 [2]

b) A line is drawn through a fixed point (a,b) [a > 0, b > 0] to meet the positive direction of the coordinate axes at P and Q respectively. Show that the minimum value of PQ is $\left(a^{\frac{2}{3}} + b^{\frac{2}{3}}\right)^{\frac{3}{2}}$. [3]

<u>Group – B</u>

Answer **any four** questions from **Q. No. 17-22** and **any three** questions from **Q. No. 23-27** :

17. a) Determine the matrices A and B, where $A + 2B = \begin{bmatrix} 1 & 2 & 0 \\ 6 & -3 & 3 \\ -5 & 3 & 1 \end{bmatrix}$ and $2A - B = \begin{bmatrix} 2 & -1 & 5 \\ 2 & -1 & 6 \\ 0 & 1 & 2 \end{bmatrix}$. [3]

[2]

[3]

b) Show that a Skew symmetric determent of third order vanishes.

18. Evaluate $\begin{vmatrix} a & b & c & | p & q & r \\ b & c & a & | q & r & p \\ c & a & b & | r & p & q \end{vmatrix}$ and hence express $(a^3 + b^3 + c^3 - 3abc)(p^3 + q^3 + r^3 - 3pqr)$ in the form $l^3 + m^3 + n^3 - 3lmn$. [5]

19. Use elementary row operations on A to obtain A^{-1} where A is $\begin{pmatrix} 2 & 0 & 0 \\ 4 & 3 & 0 \\ 6 & 4 & 1 \end{pmatrix}$. [5]

20. Prove that the matrix $\frac{1}{3} \begin{bmatrix} 1 & -2 & 2 \\ 2 & -1 & -2 \\ 2 & 2 & 1 \end{bmatrix}$ is orthogonal. [2] x - 2y + 2z = 2

Utilise this to solve the equations : 2x - y - 2z = 1. 2x + 2y + z = 7

- 21. Let $S = \{(x, y, z) \in \mathbb{R}^3 : 3x y + z = 0, 3x y z = 0\}$. Show that S is a subspace of \mathbb{R}^3 . Find a basis of S. Find also the Dimension of the Subspace. [1+2+2]
- 22. Find a basis of the subspace $S \cap T$ of \mathbb{R}^4 , where $S = \{(x, y, z, w) \in \mathbb{R}^4 : x + y + z + w = 0\}$ and $T = \{(x, y, z, w) \in \mathbb{R}^4 : 2x + y z + w = 0\}$ [5]

23. a) Solve graphically the following Linear programming problems :

Maximize $z = 5x_1 + 7x_2$ subject to $3x_1 + 8x_2 \le 12$ $2x_1 \le 3$

and $\mathbf{x}_1, \mathbf{x}_2 \ge 0$

b) Given that $x_1 = 1$, $x_2 = 3$, $x_3 = 2$ is F.S. of the equations $2x_1 + 4x_2 - 2x_3 = 10$ $10x_1 + 3x_2 + 7x_3 = 33$

Reduce the above F.S. to a B.F.S. by reduction theorem.

c) At a cattle treading firm, it is prescribed that the food ration for one animal must contain atleast 14, 22 and 11 units of nutrients A, B and C respectively. Two different kinds of the fodder are available. Each unit weight of these two contains the following amounts of three nutrients.

Fodder – 1	Fodder -2
2	1
2	3
1	1
	Fodder – 1 2 2 1

It is given that the cost of fodder 1 and 2 are 3 and 2 monetary units respectively. Formulate the problem of finding the minimum cost of purchasing the fodders as a L.P.P. [5]

- 24. a) Prove that the dual of the dual is the primal.
 - b) A salesman has to visit five cities A, B, C, D and E. The distances (in hundred miles) between the five cities are as follows :

		А	В	С	D	Е
	Α	∞	14	10	24	41
From City	В	6	∞	10	12	10
Fiom City	С	7	13	∞	8	15
	D	11	14	30	∞	17
From City	Е	6	8	12	16	∞

If the salesman starts from the city A and has to come back at city A, which route should he select so that the total distance travelled is minimum? [6]

- 25. a) Show that every extreme point of the convex set of all feasible solutions of the set of equations Ax = b, $x \ge 0$ corresponds to a B.F.S. [5]
 - b) Reduce the feasible solution (2, 1, 1) of the system

$$x_1 + 4x_2 - x_3 = 5$$

 $2x_1 + 3x_2 + x_3 = 8$, $x_1, x_2, x_3 \ge 0$ to a basic feasible solution.

c) Find all the basic solutions of

$$4x_1 + 2x_2 + 3x_3 - 8x_4 = 6$$

$$3x_1 + 5x_2 + 4x_3 - 6x_4 = 8$$

determine which of them are feasible also.

26. a) Solve by simplex method :

Maximize $z = 2x_1 + 3x_2$

subject to $x_1 + x_2 \le 8$

$$x_1 + 2x_2 = 5$$

 $2x_1 + x_2 \le 8$
 $x_1 \ge 0, x_2 \ge 0$

[6]

[2]

[3]

[3]

[2]

[4]

b) Find the optimal assignment and the corresponding assignment cost from the following cost matrix

	А	В	С	D	E
1	9	8	7	6	4
2	5	7	5	6	8
3	8	7	6	3	5
4	8	5	4	9	3
5	6	7	6	8	5

27. a) Write down the dual of the following problem :

 $\begin{array}{ll} \text{Minimize } z = & 30x_1 + 36x_2 \\ \text{subject to} & & x_1 + x_2 \geq 5 \end{array}$

$$2x_1 + 3x_2 \ge 2$$

-2x_1 + x_2 \ge 2
x_1, x_2 \ge 0

Solving the dual problem find out the optimal solution and the optimal value of the objective function of the primal.

[5]

[5]

b) Solve the following transportation problem :

	А	В	С	a _i
Ι	6	8	4	14
II	4	9	3	12
III	1	2	6	5
$\mathbf{b}_{\mathbf{j}}$	6	10	15	•

80參Q